Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84.181
Filtrar
1.
Commun Biol ; 7(1): 451, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622287

RESUMO

This report presents an optical fibre-based endo-microscopic imaging tool that simultaneously measures the topographic profile and 3D viscoelastic properties of biological specimens through the phenomenon of time-resolved Brillouin scattering. This uses the intrinsic viscoelasticity of the specimen as a contrast mechanism without fluorescent tags or photoacoustic contrast mechanisms. We demonstrate 2 µm lateral resolution and 320 nm axial resolution for the 3D imaging of biological cells and Caenorhabditis elegans larvae. This has enabled the first ever 3D stiffness imaging and characterisation of the C. elegans larva cuticle in-situ. A label-free, subcellular resolution, and endoscopic compatible technique that reveals structural biologically-relevant material properties of tissue could pave the way toward in-vivo elasticity-based diagnostics down to the single cell level.


Assuntos
Imageamento Tridimensional , Microscopia , Animais , Microscopia/métodos , Imageamento Tridimensional/métodos , Caenorhabditis elegans , Elasticidade , Biologia
3.
Otolaryngol Pol ; 78(2): 35-43, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38623860

RESUMO

<b><br>Introduction:</b> Congenital inner ear malformations resulting from embryogenesis may be visualized in radiological scans. Many attempts have been made to describe and classify the defects of the inner ear based on anatomical and radiological findings.</br> <b><br>Aim:</b> The aim was to propose and discuss computed tomography multi-planar and 3D image assessment protocols for detailed analysis of inner ear malformations in patients undergoing cochlear implantation counseling.</br> <b><br>Material and methods:</b> A retrospective analysis of 22 malformed inner ears. CT scans were analyzed using the Multi-Planar Reconstruction (MPR) option and 3D reconstruction.</br> <b><br>Results:</b> The protocol of image interpretation was developed to allow reproducibility for evaluating each set of images. The following malformations were identified: common cavity, cochlear hypoplasia type II, III, and IV, incomplete partition type II and III, and various combinations of vestibule labyrinth malformations. All anomalies have been presented and highlighted in figures with appropriate descriptions for easier identification. Figures of normal inner ears were also included for comparison. 3D reconstructions for each malformation were presented, adding clinical value to the detailed analysis.</br> <b><br>Conclusions:</b> Properly analyzing CT scans in cochlear implantation counseling is a necessary and beneficial tool for appropriate candidate selection and preparation for surgery. As proposed in this study, the unified scans evaluation scheme simplifies the identification of malformations and reduces the risk of omitting particular anomalies. Multi-planar assessment of scans provides most of the necessary details. The 3D reconstruction technique is valuable in addition to diagnostics influencing the decision-making process. It can minimize the risk of misdiagnosis. Disclosure of the inner ear defect and its precise imaging provides detailed anatomical knowledge of each ear, enabling the selection of the appropriate cochlear implant electrode and the optimal surgical technique.</br>.


Assuntos
Implante Coclear , Implantes Cocleares , Vestíbulo do Labirinto , Humanos , Estudos Retrospectivos , Imageamento Tridimensional , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X , Aconselhamento
4.
Comput Biol Med ; 173: 108390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569234

RESUMO

Radiotherapy is one of the primary treatment methods for tumors, but the organ movement caused by respiration limits its accuracy. Recently, 3D imaging from a single X-ray projection has received extensive attention as a promising approach to address this issue. However, current methods can only reconstruct 3D images without directly locating the tumor and are only validated for fixed-angle imaging, which fails to fully meet the requirements of motion control in radiotherapy. In this study, a novel imaging method RT-SRTS is proposed which integrates 3D imaging and tumor segmentation into one network based on multi-task learning (MTL) and achieves real-time simultaneous 3D reconstruction and tumor segmentation from a single X-ray projection at any angle. Furthermore, the attention enhanced calibrator (AEC) and uncertain-region elaboration (URE) modules have been proposed to aid feature extraction and improve segmentation accuracy. The proposed method was evaluated on fifteen patient cases and compared with three state-of-the-art methods. It not only delivers superior 3D reconstruction but also demonstrates commendable tumor segmentation results. Simultaneous reconstruction and segmentation can be completed in approximately 70 ms, significantly faster than the required time threshold for real-time tumor tracking. The efficacies of both AEC and URE have also been validated in ablation studies. The code of work is available at https://github.com/ZywooSimple/RT-SRTS.


Assuntos
Imageamento Tridimensional , Neoplasias , Humanos , Imageamento Tridimensional/métodos , Raios X , Radiografia , Neoplasias/diagnóstico por imagem , Respiração , Processamento de Imagem Assistida por Computador/métodos
5.
Med Eng Phys ; 126: 104153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621850

RESUMO

The Iterative Close Point (ICP) algorithm is used for bone registrations based on ultrasound measurements. However, the ICP has been shown to suffer from local minima. The Complex optimization, as a more robust routine compared to the commonly used gradient-based algorithms, could be an alternative for solving the ICP problem. In this study, we investigated the effect of the initial estimate and the number of registration points on bone registrations achieved using the ICP and a Complex optimization routine and we compared it against using Quadratic Sequential Programming (SQP). Ultrasound measurements were performed with an A-mode probe on a bovine humerus and an ovine femur embedded into ballistic gel. Simultaneously, the bones and the probe were tracked in 3D space using retroreflective markers. Kinematic, ultrasound and geometrical data obtained from scans of the specimens and the probe served as input to a bone registrations routine. Registrations were performed using two ICP solvers for different initial estimates and number of registration points. On average, 68 % of the Complex optimization registrations had less than 1 mm translation error and less than 1° rotational error for perturbations of the initial estimate from the reference measurements compared to the 35 % of the SQP ones. Similar medians of registration errors were observed between the two methods for variations of the number of the employed registration points. Although the Complex optimization provided accurate bone registrations for all cases, the objective function could not always determine the registrations with the smallest registration error. Future research should explore methodologies to overcome this challenge.


Assuntos
Algoritmos , Osso e Ossos , Animais , Bovinos , Ovinos , Ultrassonografia , Osso e Ossos/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Extremidade Inferior , Imageamento Tridimensional/métodos
7.
Adv Tech Stand Neurosurg ; 50: 295-305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592535

RESUMO

Surgical approaches directed toward craniovertebral junction (CVJ) can be addressed to the ventral, dorsal, and lateral aspects through a variety of 360° surgical corridors Herein, we report features, advantages, and limits of the updated technical support in CVJ surgery in clinical setting and dissection laboratories enriched by our preliminary surgical results of the simultaneous application of O-arm intraoperative neuronavigation and imaging system along with the 3D-4K EX in TOA for the treatment of CVJ pathologies.In the past 4 years, eight patients harboring CVJ compressive pathologies underwent one-step combined anterior neurosurgical decompression and posterior instrumentation and fusion technique with the aid of exoscope and O-arm. In our equipped Cranio-Vertebral Junction Laboratory, we use fresh cadavers (and injected "head and neck" specimens) whose policy, protocols, and logistics have already been elucidated in previous works. Five fresh-frozen adult specimens were dissected adopting an FLA. In these specimens, a TOA was also performed, as well as a neuronavigation-assisted comparison between transoral and transnasal explorable distances.A complete decompression along with stable instrumentation and fusion of the CVJ was accomplished in all the cases at the maximum follow-up (mean: 25.3 months). In two cases, the O-arm navigation allowed the identification of residual compression that was not clearly visible using the microscope alone. In four cases, it was not possible to navigate C1 lateral masses and C2 isthmi due to the angled projection unfitting with the neuronavigation optical system, so misleading the surgeon and strongly suggesting changing surgical strategy intraoperatively. In another case (case 4), it was possible to navigate and perform both C1 lateral masses and C2 isthmi screwing, but the screw placement was suboptimal at the immediate postoperative radiological assessment. In this case, the hardware displacement occurred 2 months later requiring reoperation.


Assuntos
Imageamento Tridimensional , Cirurgia Assistida por Computador , Adulto , Humanos , Tomografia Computadorizada por Raios X , Parafusos Ósseos , Cadáver
8.
Sci Rep ; 14(1): 8172, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589391

RESUMO

Several new systems for three-dimensional (3D) surface imaging of the face have become available to assess changes following orthognathic or facial surgery. Before they can be implemented in practice, their reliability and validity must be established. Our aim, therefore, was to study the intra- and inter-system reliability and validity of 3dMD (stereophotogrammetry), Artec Eva and Artec Space Spider (both structured light scanners). Intra- and inter-system reliability, expressed in root mean square distance, was determined by scanning a mannequin's head and the faces of healthy volunteers multiple times. Validity was determined by comparing the linear measurements of the scans with the known distances of a 3D printed model. Post-processing errors were also calculated. Intra-system reliability after scanning the mannequin's head was best with the Artec Space Spider (0.04 mm Spider; 0.07 mm 3dMD; 0.08 mm Eva). The least difference in inter-system reliability after scanning the mannequin's head was between the Artec Space Spider and Artec Eva. The best intra-system reliability after scanning human subjects was with the Artec Space Spider (0.15 mm Spider; 0.20 mm Eva; 0.23 mm 3dMD). The least difference in inter-system reliability after scanning human subjects was between the Artec Eva and Artec Space Spider. The most accurate linear measurement validity occurred with the Artec Space Spider. The post-processing error was 0.01 mm for all the systems. The Artec Space Spider is the most reliable and valid scanning system.


Assuntos
Face , Imageamento Tridimensional , Humanos , Face/diagnóstico por imagem , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Fotogrametria , Voluntários Saudáveis
9.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 227-233, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597082

RESUMO

OBJECTIVES: This clinical study aimed to assess the trueness of three intraoral scanners for the recor-ding of the maximal intercuspal position (MIP) to provide a reference for clinical practice. METHODS: Ten participants with good occlusal relationship and healthy temporomandibular joint were recruited. For the control group, facebow transferring procedures were performed, and bite registrations at the MIP were used to transfer maxillary and mandibular casts to a mechanical articulator, which were then scanned with a laboratory scanner to obtain digital cast data. For the experimental groups, three intraoral scanners (Trios 3, Carestream 3600, and Aoralscan 3) were used to obtain digital casts of the participants at the MIP following the scanning workflows endorsed by the corresponding manufacturers. Subsequently, measurement points were marked on the control group's digital casts at the central incisors, canines, and first molars, and corresponding distances between these points on the maxillary and mandibular casts were measured to calculate the sum of measured distances (DA). Distances between measurement points in the incisor (DI), canine (DC), and first molar (DM) regions were also calculated. The control group's maxillary and mandibular digital casts with the added measurement points were aligned with the experimental group's casts, and DA, DI, DC, and DM values of the aligned control casts were determined. Statistical analysis was performed on DA, DI, DC, and DM obtained from both the control and experimental groups to evaluate the trueness of the three intraoral scanners for the recording of MIP. RESULTS: In the control group, DA, DI, DC, and DM values were (39.58±6.40), (13.64±3.58), (14.91±2.85), and (11.03±1.56) mm. The Trios 3 group had values of (38.99±6.60), (13.42±3.66), (14.55±2.87), and (11.03±1.69) mm. The Carestream 3600 group showed values of (38.57±6.36), (13.56±3.68), (14.45±2.85), and (10.55±1.41) mm, while the Aoralscan 3 group had values of (38.16±5.69), (13.03±3.54), (14.23±2.59), and (10.90±1.54) mm. Analysis of variance revealed no statistically significant differences between the experimental and control groups for overall deviation DA (P=0.96), as well as local deviations DI (P=0.98), DC (P=0.96), and DM (P=0.89). CONCLUSIONS: With standardized scanning protocols, the three intraoral scanners demonstrated comparable trueness to traditional methods in recording MIP, fulfilling clinical requirements.


Assuntos
Incisivo , Dente Molar , Humanos , Mandíbula , Maxila , Desenho Assistido por Computador , Imageamento Tridimensional , Técnica de Moldagem Odontológica
10.
Dental Press J Orthod ; 29(1): e2423217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567923

RESUMO

OBJECTIVE: This study evaluated the accuracy and precision of digital models acquisition using a home-built, low-cost scanning system based on the structured light method. METHODS: a plaster model (PM) was scanned using the experimental device (SL) and a dental desktop scanner (DS). The teeth dimensions of PM and SL models were measured in triplicate, with a caliper and digitally, respectively. The agreement of the measurements of each model was evaluated using the intraclass correlation coefficient, and the validity between the different measurement techniques was assessed using the Bland-Altman analysis. The accuracy and precision of the models were qualitatively investigated using the mesh superposition of the SL and DS models. RESULTS: A high intraclass correlation coefficient was observed in all models (PM=0.964; SL1=0.998; SL2=0.995; SL3=0.998), and there was no statistical difference between the measurements of the SL models (p>0.05). PM and SL model measurements were found to be in good agreement, with only 3.57% of the observed differences between the same measurement being located outside 95% limits of agreement according to Bland and Altman (0.43 and -0.40 mm). In the superimpositions of SL-SL and SL-DS models, areas of discrepancy greater than 0.5 mm were observed mainly in interproximal, occlusal, and cervical sites. CONCLUSION: These results indicate that the home-built SL scanning system did not possess sufficient accuracy and precision for many clinical applications. However, the consistency in preserving the dental proportions suggests that the equipment can be used for planning, storage, and simple clinical purposes.


Assuntos
Imageamento Tridimensional , Dente , Imageamento Tridimensional/métodos , Modelos Dentários , Reprodutibilidade dos Testes
11.
Sci Adv ; 10(15): eadi5794, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598626

RESUMO

Histological hematoxylin and eosin-stained (H&E) tissue sections are used as the gold standard for pathologic detection of cancer, tumor margin detection, and disease diagnosis. Producing H&E sections, however, is invasive and time-consuming. While deep learning has shown promise in virtual staining of unstained tissue slides, true virtual biopsy requires staining of images taken from intact tissue. In this work, we developed a micron-accuracy coregistration method [micro-registered optical coherence tomography (OCT)] that can take a two-dimensional (2D) H&E slide and find the exact corresponding section in a 3D OCT image taken from the original fresh tissue. We trained a conditional generative adversarial network using the paired dataset and showed high-fidelity conversion of noninvasive OCT images to virtually stained H&E slices in both 2D and 3D. Applying these trained neural networks to in vivo OCT images should enable physicians to readily incorporate OCT imaging into their clinical practice, reducing the number of unnecessary biopsy procedures.


Assuntos
Redes Neurais de Computação , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Biópsia , Imageamento Tridimensional
12.
J Biomech ; 166: 112066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38574563

RESUMO

Precise measurement of joint-level motion from stereo-radiography facilitates understanding of human movement. Conventional procedures for kinematic tracking require significant manual effort and are time intensive. The current work introduces a method for fully automatic tracking of native knee kinematics from stereo-radiography sequences. The framework consists of three computational steps. First, biplanar radiograph frames are annotated with segmentation maps and key points using a convolutional neural network. Next, initial bone pose estimates are acquired by solving a polynomial optimization problem constructed from annotated key points and anatomic landmarks from digitized models. A semidefinite relaxation is formulated to realize the global minimum of the non-convex problem. Pose estimates are then refined by registering computed tomography-based digitally reconstructed radiographs to masked radiographs. A novel rendering method is also introduced which enables generating digitally reconstructed radiographs from computed tomography scans with inconsistent slice widths. The automatic tracking framework was evaluated with stereo-radiography trials manually tracked with model-image registration, and with frames which capture a synthetic leg phantom. The tracking method produced pose estimates which were consistently similar to manually tracked values; and demonstrated pose errors below 1.0 degree or millimeter for all femur and tibia degrees of freedom in phantom trials. Results indicate the described framework may benefit orthopaedics and biomechanics applications through acceleration of kinematic tracking.


Assuntos
Articulação do Joelho , Joelho , Humanos , Fenômenos Biomecânicos , Radiografia , Articulação do Joelho/diagnóstico por imagem , Joelho/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos
13.
BMJ Case Rep ; 17(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642931

RESUMO

Bilateral Wilms tumour (BWT) is a surgically challenging condition. Virtual reality (VR) reconstruction aids surgeons to foresee the anatomy ahead of Nephron Sparing Surgery (NSS). Three-dimensional (3D) visualisation improves the anatomical orientation of surgeons performing NSS. We herewith report a case of BWT where VR planning and 3D printing were used to aid NSS. Conventional imaging is often found to be inadequate while assessing the tumour-organ-vascular anatomy. Advances like VR and 3D printing help surgeons plan better for complex surgeries like bilateral NSS. Next-generation extended reality tools will likely aid robotic-assisted precision NSS and improve patient outcomes.


Assuntos
Neoplasias Renais , Realidade Virtual , Tumor de Wilms , Criança , Humanos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/cirurgia , Neoplasias Renais/patologia , Tumor de Wilms/diagnóstico por imagem , Tumor de Wilms/cirurgia , Tumor de Wilms/patologia , Nefrectomia/métodos , Néfrons/cirurgia , Néfrons/patologia , Imageamento Tridimensional/métodos
14.
Langenbecks Arch Surg ; 409(1): 109, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570339

RESUMO

PURPOSE: Beside many advantages, disadvantages such as reduced degrees of freedom and poorer depth perception are still apparent in laparoscopic surgery. 3D visualization and the development of complex instruments are intended to counteract the disadvantages. We want to find out whether the use of complex instruments and 3D visualization has an influence on the performance of novices. METHODS: 48 medical students with no experience in laparoscopic surgery or simulator-based laparoscopy training were included. They were randomized in four groups according to a stratification assessment. During a structured training period they completed the FLS-Tasks "PEG Transfer", "Pattern Cut" and "Intracorporeal Suture" and a transfer task based on these three. Two groups used conventional laparoscopic instruments with 3D or 2D visualization, two groups used complex curved instruments. The groups were compared in terms of their performance. RESULTS: In 2D laparoscopy there was a better performance with straight instruments vs. curved instruments in PEG Transfer and Intracorporeal Suture. In the transfer task, fewer errors were made with straight instruments. In 2D vs. 3D laparoscopy when using complex curved instruments there was an advantage in Intracorporeal Suture and PEG Transfer for 3D visualization. Regarding the transfer exercise, a better performance was observed and fewer errors were made in 3D group. CONCLUSION: We could show that learning laparoscopic techniques with complex curved instruments is more difficult with standard 2D visualization and can be overcome using 3D optics. The use of curved instruments under 3D vision seems to be advantageous when working on more difficult tasks.


Assuntos
Laparoscopia , Treinamento por Simulação , Humanos , Competência Clínica , Imageamento Tridimensional/métodos , Laparoscopia/métodos , Curva de Aprendizado , Treinamento por Simulação/métodos
15.
J Orthop Surg Res ; 19(1): 246, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632565

RESUMO

Background Tunnel placement is a key step in anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to evaluate the accuracy of bone tunnel drilling in arthroscopic ACL reconstruction assisted by a three-dimensional (3D) image-based robot system. Methods Robot-assisted ACL reconstruction was performed on twelve freshly frozen knee specimens. During the operation, three-dimensional images were used for ACL bone tunnel planning, and the robotic arm was used for navigation and drilling. Twelve patients who underwent traditional arthroscopic ACL reconstruction were included. 3D computed tomography was used to measure the actual position of the ACL bone tunnel and to evaluate the accuracy of the robotic and traditional ACL bone tunnel. Results On the femoral side, the positions of robotic and traditional surgery tunnels were 29.3 ± 1.4% and 32.1 ± 3.9% in the deep-to-shallow direction of the lateral femoral condyle (p = 0.032), and 34.6 ± 1.2% and 21.2 ± 9.4% in the high-to-low direction (p < 0.001), respectively. On the tibial side, the positions of the robotic and traditional surgical tunnels were located at 48.4 ± 0.9% and 45.8 ± 2.8% of the medial-to-lateral diameter of the tibial plateau (p = 0.008), 38.1 ± 0.8% and 34.6 ± 6.0% of the anterior-to-posterior diameter (p = 0.071), respectively. Conclusions In this study, ACL reconstruction was completed with the assistance of a robot arm and 3D images, and the robot was able to drill the bone tunnel more accurately than the traditional arthroscopic ACL reconstruction.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Robótica , Humanos , Imageamento Tridimensional , Tomografia Computadorizada por Raios X , Articulação do Joelho/cirurgia , Tíbia/cirurgia , Fêmur/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Lesões do Ligamento Cruzado Anterior/cirurgia
16.
J Biomed Opt ; 29(Suppl 2): S22706, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638450

RESUMO

Significance: Three-dimensional quantitative phase imaging (QPI) has rapidly emerged as a complementary tool to fluorescence imaging, as it provides an objective measure of cell morphology and dynamics, free of variability due to contrast agents. It has opened up new directions of investigation by providing systematic and correlative analysis of various cellular parameters without limitations of photobleaching and phototoxicity. While current QPI systems allow the rapid acquisition of tomographic images, the pipeline to analyze these raw three-dimensional (3D) tomograms is not well-developed. We focus on a critical, yet often underappreciated, step of the analysis pipeline that of 3D cell segmentation from the acquired tomograms. Aim: We report the CellSNAP (Cell Segmentation via Novel Algorithm for Phase Imaging) algorithm for the 3D segmentation of QPI images. Approach: The cell segmentation algorithm mimics the gemstone extraction process, initiating with a coarse 3D extrusion from a two-dimensional (2D) segmented mask to outline the cell structure. A 2D image is generated, and a segmentation algorithm identifies the boundary in the x-y plane. Leveraging cell continuity in consecutive z-stacks, a refined 3D segmentation, akin to fine chiseling in gemstone carving, completes the process. Results: The CellSNAP algorithm outstrips the current gold standard in terms of speed, robustness, and implementation, achieving cell segmentation under 2 s per cell on a single-core processor. The implementation of CellSNAP can easily be parallelized on a multi-core system for further speed improvements. For the cases where segmentation is possible with the existing standard method, our algorithm displays an average difference of 5% for dry mass and 8% for volume measurements. We also show that CellSNAP can handle challenging image datasets where cells are clumped and marred by interferogram drifts, which pose major difficulties for all QPI-focused AI-based segmentation tools. Conclusion: Our proposed method is less memory intensive and significantly faster than existing methods. The method can be easily implemented on a student laptop. Since the approach is rule-based, there is no need to collect a lot of imaging data and manually annotate them to perform machine learning based training of the model. We envision our work will lead to broader adoption of QPI imaging for high-throughput analysis, which has, in part, been stymied by a lack of suitable image segmentation tools.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , 60704 , Algoritmos , Imagem Óptica
17.
Biomed Phys Eng Express ; 10(3)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38599190

RESUMO

Background. Thoracoabdominal MRI is limited by respiratory motion, especially in populations who cannot perform breath-holds. One approach for reducing motion blurring in radially-acquired MRI is respiratory gating. Straightforward 'hard-gating' uses only data from a specified respiratory window and suffers from reduced SNR. Proposed 'soft-gating' reconstructions may improve scan efficiency but reduce motion correction by incorporating data with nonzero weight acquired outside the specified window. However, previous studies report conflicting benefits, and importantly the choice of soft-gated weighting algorithm and effect on image quality has not previously been explored. The purpose of this study is to map how variable soft-gated weighting functions and parameters affect signal and motion blurring in respiratory-gated reconstructions of radial lung MRI, using neonates as a model population.Methods. Ten neonatal inpatients with respiratory abnormalities were imaged using a 1.5 T neonatal-sized scanner and 3D radial ultrashort echo-time (UTE) sequence. Images were reconstructed using ungated, hard-gated, and several soft-gating weighting algorithms (exponential, sigmoid, inverse, and linear weighting decay outside the period of interest), with %Nprojrepresenting the relative amount of data included. The apparent SNR (aSNR) and motion blurring (measured by the maximum derivative of image intensity at the diaphragm, MDD) were compared between reconstructions.Results. Soft-gating functions produced higher aSNR and lower MDD than hard-gated images using equivalent %Nproj, as expected. aSNR was not identical between different gating schemes for given %Nproj. While aSNR was approximately linear with %Nprojfor each algorithm, MDD performance diverged between functions as %Nprojdecreased. Algorithm performance was relatively consistent between subjects, except in images with high noise.Conclusion. The algorithm selection for soft-gating has a notable effect on image quality of respiratory-gated MRI; the timing of included data across the respiratory phase, and not simply the amount of data, plays an important role in aSNR. The specific soft-gating function and parameters should be considered for a given imaging application's requirements of signal and sharpness.


Assuntos
Imageamento Tridimensional , Pulmão , Recém-Nascido , Humanos , Imageamento Tridimensional/métodos , Respiração , Imageamento por Ressonância Magnética/métodos , Algoritmos
18.
Skin Res Technol ; 30(4): e13679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616503

RESUMO

BACKGROUND: Injectable filler, a nonsurgical beauty method, has gained popularity in rejuvenating sagging skin. In this study, polydioxanone (PDO) was utilized as the main component of the ULTRACOL200 filler that helps stimulate collagenesis and provide skin radiant effects. The study aimed to evaluate and compare the effectiveness of ULTRACOL200 with other commercialized products in visually improving dermatological problems. METHODS: Herein, 31 participants aged between 20 and 59 years were enrolled in the study. 1 mL of the testing product, as well as the quantity for the compared groups was injected into each participants face side individually. Subsequently, skin texture and sunken volume of skin were measured using ANTERA 3D CS imaging technology at three periods: before the application, 4 weeks after the initial application, and 4 weeks after the 2nd application of ULTRACOL200. RESULTS: The final results of skin texture and wrinkle volume evaluation consistently demonstrated significant enhancement. Consequently, subjective questionnaires were provided to the participants to evaluate the efficacy of the testing product, illustrating satisfactory responses after the twice applications. CONCLUSION: The investigation has contributed substantially to the comprehension of a PDO-based filler (ULTRACOL200) for skin enhancement and provided profound insight for future clinical trials.


Assuntos
Sulco Nasogeniano , Transplante de Pele , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Pele/diagnóstico por imagem , Imageamento Tridimensional , Tecnologia
19.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 208-213, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38584101

RESUMO

Objective: To investigate the spatial distribution pattern of local tumor progression (LTP) for hepatocellular carcinoma (HCC) ≤5 cm after microwave ablation. Methods: A retrospective analysis was performed on 169 HCCs with matched MRI before and after ablation from December 2009 to December 2019. A tumor MRI was reconstructed using three-dimensional visualization technology. LTP was classified as contact or non-contact, early or late stage, according to whether LTP was in contact with the edge of the ablation zone and the occurrence time (24 months). The tumor-surrounded area was divided into eight quadrants by using the eight-quadrant map method. An analysis was conducted on the spatial correlation between the quadrant where the ablative margin (AM) safety boundary was located and the quadrant where different types of LTP occurred. The t-test, or rank-sum test, was used for the measurement data. 2-test for count data was used to compare the difference between the two groups. Results: The AM quadrant had a distribution of 54.4% LTP, 64.2% early LTP stage, and 69.1% contact LTP, suggesting this quadrant was much more concentrated than the other quadrants (P < 0.001). Additionally, the AM quadrant had only 15.2% of non-contact type LTP and 17.1% of late LTP, which was not significantly different from the average distribution probability of 12.5% (100/8%) among the eight quadrants (P = 0.667, 0.743). 46.6% of early contact type LTP was located at the ablation needle tip, 25.2% at the body, and 28.1% at the caudal, while the location distribution probabilities of non-early contact LTP were 34.8%, 31.8%, and 33.3%, respectively. Conclusion: LTP mostly occurs in areas where the ablation safety boundary is the shortest. However, non-contact LTP and late LTP stages exhibit the feature of uniform distribution. Thus, this type of LPT may result from an inadequate non-ablation safety boundary.


Assuntos
Carcinoma Hepatocelular , Ablação por Cateter , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Imageamento Tridimensional/métodos , Estudos Retrospectivos , Micro-Ondas/uso terapêutico , Ablação por Cateter/métodos , Imageamento por Ressonância Magnética/métodos , Resultado do Tratamento
20.
Sci Rep ; 14(1): 8447, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600121

RESUMO

Amniotes feature two principal visual processing systems: the tectofugal and thalamofugal pathways. In most mammals, the thalamofugal pathway predominates, routing retinal afferents through the dorsolateral geniculate complex to the visual cortex. In most birds, the thalamofugal pathway often plays the lesser role with retinal afferents projecting to the principal optic thalami, a complex of several nuclei that resides in the dorsal thalamus. This thalamic complex sends projections to a forebrain structure called the Wulst, the terminus of the thalamofugal visual system. The thalamofugal pathway in birds serves many functions such as pattern discrimination, spatial memory, and navigation/migration. A comprehensive analysis of avian species has unveiled diverse subdivisions within the thalamic and forebrain structures, contingent on species, age, and techniques utilized. In this study, we documented the thalamofugal system in three dimensions by integrating histological and contrast-enhanced computed tomography imaging of the avian brain. Sections of two-week-old chick brains were cut in either coronal, sagittal, or horizontal planes and stained with Nissl and either Gallyas silver or Luxol Fast Blue. The thalamic principal optic complex and pallial Wulst were subdivided on the basis of cell and fiber density. Additionally, we utilized the technique of diffusible iodine-based contrast-enhanced computed tomography (diceCT) on a 5-week-old chick brain, and right eyeball. By merging diceCT data, stained histological sections, and information from the existing literature, a comprehensive three-dimensional model of the avian thalamofugal pathway was constructed. The use of a 3D model provides a clearer understanding of the structural and spatial organization of the thalamofugal system. The ability to integrate histochemical sections with diceCT 3D modeling is critical to better understanding the anatomical and physiologic organization of complex pathways such as the thalamofugal visual system.


Assuntos
Imageamento Tridimensional , Vias Visuais , Animais , Vias Visuais/fisiologia , Tálamo/fisiologia , Prosencéfalo/fisiologia , Galinhas/fisiologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...